首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   1篇
废物处理   3篇
环保管理   1篇
综合类   13篇
基础理论   3篇
污染及防治   32篇
评价与监测   5篇
社会与环境   4篇
  2023年   1篇
  2022年   6篇
  2021年   10篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   10篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2005年   2篇
  1985年   1篇
  1964年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
11.
12.
13.
Environmental Science and Pollution Research - The utilization of economic capabilities to raise production in the economy enhances the industrial activities and use of transportation. These...  相似文献   
14.

The world is experiencing an energy crisis and environmental issues due to the depletion of fossil fuels and the continuous increase in carbon dioxide concentrations. Microalgal biofuels are produced using sunlight, water, and simple salt minerals. Their high growth rate, photosynthesis, and carbon dioxide sequestration capacity make them one of the most important biorefinery platforms. Furthermore, microalgae's ability to alter their metabolism in response to environmental stresses to produce relatively high levels of high-value compounds makes them a promising alternative to fossil fuels. As a result, microalgae can significantly contribute to long-term solutions to critical global issues such as the energy crisis and climate change. The environmental benefits of algal biofuel have been demonstrated by significant reductions in carbon dioxide, nitrogen oxide, and sulfur oxide emissions. Microalgae-derived biomass has the potential to generate a wide range of commercially important high-value compounds, novel materials, and feedstock for a variety of industries, including cosmetics, food, and feed. This review evaluates the potential of using microalgal biomass to produce a variety of bioenergy carriers, including biodiesel from stored lipids, alcohols from reserved carbohydrate fermentation, and hydrogen, syngas, methane, biochar and bio-oils via anaerobic digestion, pyrolysis, and gasification. Furthermore, the potential use of microalgal biomass in carbon sequestration routes as an atmospheric carbon removal approach is being evaluated. The cost of algal biofuel production is primarily determined by culturing (77%), harvesting (12%), and lipid extraction (7.9%). As a result, the choice of microalgal species and cultivation mode (autotrophic, heterotrophic, and mixotrophic) are important factors in controlling biomass and bioenergy production, as well as fuel properties. The simultaneous production of microalgal biomass in agricultural, municipal, or industrial wastewater is a low-cost option that could significantly reduce economic and environmental costs while also providing a valuable remediation service. Microalgae have also been proposed as a viable candidate for carbon dioxide capture from the atmosphere or an industrial point source. Microalgae can sequester 1.3 kg of carbon dioxide to produce 1 kg of biomass. Using potent microalgal strains in efficient design bioreactors for carbon dioxide sequestration is thus a challenge. Microalgae can theoretically use up to 9% of light energy to capture and convert 513 tons of carbon dioxide into 280 tons of dry biomass per hectare per year in open and closed cultures. Using an integrated microalgal bio-refinery to recover high-value-added products could reduce waste and create efficient biomass processing into bioenergy. To design an efficient atmospheric carbon removal system, algal biomass cultivation should be coupled with thermochemical technologies, such as pyrolysis.

  相似文献   
15.
Environmental Science and Pollution Research - Strategic valorization of readily available sugarcane bagasse (SB) is very important for waste management and sustainable biorefinery. Conventional SB...  相似文献   
16.

Pakistan is an agricultural country and due to the shortage of clean water, most of the irrigated area (32,500 ha) of Pakistan was supplied with wastewater (0.876?×?109 m3/year). Concentrations of heavy metals in radish (Raphanus sativus) and turnip (Brassica rapa) taken from vegetable fields in Sargodha, Pakistan, were measured. Untreated wastewater was used persistently for a long time to irrigate these vegetable fields. A control site was selected that had a history of fresh groundwater irrigation. Mean metal concentrations were found for irrigation water, soil, and vegetables. In irrigation water, concentrations of Mo and Pb at three sites and Se at sites II and III were higher than the recommended limits. In vegetables, concentrations of Mo and Pb were above the maximum permissible limits. High bioconcentration factor was observed for Zn (12.61 in R. sativus and 11.72 in B. rapa) at site I and high pollution load index was found for Pb (3.89 in R. sativus and 3.87 in B. rapa) at site II. The differences in metal concentrations found in samples depended upon different soil nature and assimilation capacities of vegetables at different sites which in turn depended upon different environmental cues. The entrance of metal and metalloids to human body may happen through different pathways; however, the food chain is the chief route through which metals are transferred from vegetables to individuals. Health risk index observed for metals, (Mo, As, Ni, Cu, and Pb) higher than 1 indicated high risk through consumption of these vegetables at three sites.

  相似文献   
17.
The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90–99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.  相似文献   
18.
A survey of the epiphytic leaves of Posidonia oceanica was conducted along a depth transect at both the control station Attaya in the Kerkennah Islands and the disturbed Mahres station on the Sfax coast (Tunisia). Samples were collected by scuba divers at depths of 5, 10, 15, and 20 m in July 2008. We evaluated whether the pattern of spatial variability of the macroepiphyte assemblages of leaves of Posidonia oceanica differed in relation to anthropogenic interference. The results indicate that the decrease in shoot density and leaf length according to depth was low at Mahres. The biomass of epiphytic leaves and the percentage cover of epiphytic assemblages decreased with depth for both stations and heavily at Mahres, this decline being related to anthropogenic disturbance. This study shows that the highest values of epifauna and epiflora were detected at the disturbed station Mahres. Macroalgae assemblages decreased with depth at both stations and were dominated by Rhodophyta, whereas the percentage cover of the epifauna leaf that decreases according to depth was dominated by Hydrozoa and Bryozoa. Changes in epiphyte assemblages, epiphytic biomass, percentage cover, and species richness in proportion to Heterokontophyta, Rhodophyta, Cyanobacteria, Hydrozoa, Porifera, and Tunicata between the two stations constitute promising tools for detecting environmental disturbance.  相似文献   
19.
Attari Saroba is a village located on the Ferozepur road near Attari Darbar. This study assesses techno-economic feasibility for biogas production in Attari Saroba village using different tools for data collection. Since there was no waste management system in the village, the residents threw household waste in the streets and used the animal waste as the fertilizer, while the leftover waste was disposed off in heaps scattered around the village. This waste can be utilized to generate biogas that can be a renewable substitute for natural gas as natural gas is becoming scarce in our country and is suitable for home use in cooking and heating purposes. Thus, the objective of the study is to combat pollution by managing organic waste and to produce biogas by reusing waste in Attari Saroba through waste recycling process. The suggested type of digester for this area is dispersed growth, Chinese-type combined digester and gasholder. Two designs of different measurements were proposed due to varying family size. The residents were receptive to the idea of installing and maintaining digesters in their homes as they faced regular gas shortages in their area.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号